Телефон:

+7 (495) 146-65-64

Заказать звонок
0
Корзина

Официальный дилер климатического
оборудования по России!

Время работы: Пн.-пт.: 09.00 — 19.00, сб-вс: 10.00 - 17.00

Москва, Днепропетровская, 2, каб. 311.

Теплообменное оборудование

Теплообменное оборудование Отправьте быструю заявку

Теплообменное оборудование – это набор различных устройств и агрегатов, осуществляющих или способствующих передаче тепла от горячего теплоносителя холодному.

Теплоноситель – это среда, обладающая определенным объемом тепла. Ей могут быть: вода, антифриз, нефть, кислоты, газы и многие другие виды веществ.

"ИНТЕХ-Климат" готова реализовать профессиональные решения по климатическому и другому инженерному оборудованию. Выполним полный цикл работ "под ключ": проектирование, подбор, поставка, монтаж и обслуживание.

Звоните сейчас: +7 (495) 146-65-64. Отправьте заявку

Показатели работы теплообменного аппарата

К теплообменному оборудованию можно отнести насосы, насосные станции, приборы автоматики, запорную арматуру и, кончено же, теплообменники.

Главное условие применения любого оборудования – высокая продуктивность. У теплообменного аппарата этот показатель зависит от ряда критериев:

  1. Коэффициент теплопередачи определяется агрегатным состоянием вещества, конструкцией и материалом теплообменника.
  2. Площадь теплообмена: чем больше поверхность соприкосновения рабочей среды с греющим элементом, тем большее количество энергии сможет принять теплопотребитель.
  3. Разность температур – движущая сила процесса.

На эффективность работы прибора большое значение оказывает способ передачи энергии: теплопередача, конвекция или излучение. Один аппарат может сочетать в себе все три типа в разных частях устройства.

Классификация теплообменного оборудования предприятий

По назначению теплообменные аппараты делятся на подогреватели, испарители, конденсаторы, холодильники и т. д.

По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные.

Рекуперативными называются такие аппараты, в которых тепло от горячего теплоносителя к холодному передается через разделяющую их стенку. Примером таких аппаратов являются паровые котлы, подогреватели, конденсаторы и др.

Регенеративными называются такие аппараты, в которых одна и та же поверхность нагрева омывается то горячим, то холодным теплоносителем. При протекании горячей жидкости тепло воспринимается стенками аппарата и в них аккумулируется, при протекании холодной жидкости это аккумулированное тепло ею воспринимается. Примером таких аппаратов являются регенераторы мартеновских и стеклоплавильных печей, воздухоподогреватели доменных печей и др.

В рекуперативных и регенеративных аппаратах процесс передачи тепла неизбежно связан с поверхностью твердого тела. Поэтому такие аппараты называются также поверхностными.

В смесительных аппаратах процесс теплопередачи происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. В этом случае теплопередача протекает одновременно с материальным обменом. Примером таких теплообменников являются башенные охладители (градирни), скрубберы и др.

Если участвующие в тепломассообмене горячий и холодный теплоносители перемещаются вдоль поверхности нагрева в одном и том же направлении, тепломассообменный аппарат называют прямоточным, при встречном движении теплоносителей и сред — противоточным, а при перекрестном движении — перекрестноточным. Перечисленные схемы движения теплоносителей и сред в аппаратах называют простыми. В том случае, когда направление движения хотя бы одного из потоков по отношению к другому меняется, говорят о сложной схеме движения теплоносителей и сред.

Виды и свойства теплоносителей

В качестве теплоносителей в зависимости от назначения производственных процессов могут применяться: водяной пар, горячая вода, дымовые и топочные газы, высокотемпературные и низкотемпературные теплоносители.

Водяной пар как греющий теплоноситель получил большое распространение вследствие ряда своих достоинств:

  1. Высокие коэффициенты теплоотдачи при конденсации водяного пара позволяют получать относительно небольшие поверхности теплообмена.
  2. Большое изменение энтальпии при конденсации водяного пара позволяет расходовать малое его массовое количество для передачи сравнительно больших количеств теплоты.
  3. Постоянная температура конденсации при заданном давлении дает возможность наиболее просто поддерживать постоянный режим и регулировать процесс в аппаратах.

Основным недостатком водяного пара является значительное повышение давления в зависимости от температуры насыщения.

Наиболее часто употребляемое давление греющего пара в теплообменниках составляет от 0,2 до 1,2 МПа. Теплообменники с паровым обогревом для высоких температур получаются очень тяжелыми и громоздкими по условиям обеспечения прочности, имеют толстые фланцы и стенки, весьма дороги и поэтому применяются редко.

Горячая вода получила большое распространение в качестве греющего теплоносителя, особенно в системах отопления и вентиляционных установках. Подогрев воды осуществляется в специальных водогрейных котлах или водонагревательных установках ТЭЦ и котельных. Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплоотдачи

Дымовые и топочные газы как греющая среда применяются обычно на месте их получения для непосредственного обогрева промышленных изделий и материалов, если физико-химические характеристики последних не изменяются при взаимодействии с сажей и золой.

Достоинством топочных газов является возможность нагрева ими материала до весьма высоких температур. Однако оно не всегда может быть использовано вследствие трудности регулировки и возможности перегрева материала. Высокая температура топочных газов приводит к большим тепловым потерям. Газы, покидающие топку с температурой выше 1000 °С, доходят до потребителя с температурой не выше 700 °С, так как осуществить удовлетворительную термоизоляцию при таком высоком уровне температур достаточно трудно.

К недостаткам дымовых и топочных газов при использовании их в качестве теплоносителя можно отнести следующее:

  1. Малая плотность газов, которая влечет за собой необходимость получения больших объемов для обеспечения достаточной теплопроизводительности, что приводит к созданию громоздких трубопроводов.
  2. Вследствие малой удельной теплоемкости газов их необходимо подавать в аппараты в большом количестве с высокой температурой; последнее обстоятельство вынуждает применять огнеупорные материалы для трубопроводов. Прокладка таких газопроводов, а также создание запорных и регулирующих приспособлений по тракту течения газа связаные с большими трудностями.
  3. Вследствие низкого коэффициента теплоотдачи со стороны газов теплоиспользующая аппаратура должна иметь большие поверхности нагрева и поэтому получается весьма громоздкой.

К высокотемпературным теплоносителям относятся: минеральные масла, органические соединения, расплавленные металлы и соли. Низкотемпературные теплоносители — это вещества, кипящие при температурах ниже 0 °С. К ним относят: аммиак, двуокись углерода, сернистый ангидрид, фреоны.

Универсальное оборудование

Из всех разновидностей наиболее востребованы пластинчатые теплообменники. Их популярность обусловлена эксплуатационными характеристиками и оптимизируемостью под определенные гидравлические и термодинамические параметры. Кроме того, эти устройства обладают малым весом и занимают небольшую площадь.

Пластинчатые теплообменники, цельносварные, паянные или разборные демонстрируют высокие теплотехнические показатели. Дело в том, что в узких каналах между гофропластинами создается турбулизация жидких теплоносителей, что способствует интенсивному обмену тепловой энергией в агрегате. Отличительная особенность заключается в том, что пластины различного профиля можно комбинировать и модифицировать, тем самым адаптируя мощность и эффективность в зависимости от изменений эксплуатационных условий.

Среди других преимуществ этих аппаратов отмечают внушительный диапазон температурных условий (-30°С — +200°С), возможность быстрого и недорого монтажа, подбор эластомеров для уплотнения каналов, приемлемую цену относительно рабочего потенциала. Гибкие конструкции устройств Termowave легко чистить и обслуживать. Для разбора нужно немного ослабить талрепы.

Применение теплообменников

Не менее популярные кожухотрубные теплообменники стремятся купить те, кто доверяет их надежности и прочности. Эти агрегаты обладают простой конструкцией, подразделяющейся на четыре типа, в зависимости от конфигурации трубок и локализации компенсатора. Универсальны в применении — от конденсаторов и холодильных установок до испарителей. Одним из наиболее часто используемых видов кожухотрубных агрегатов считается водяной подогреватель, в котором тепловым агентом выступает горячая вода. Но в целом, рабочие характеристики этих теплообменников уступают пластинчатым аналогам.

Производители оборудования постоянно совершенствуют конструкцию аппаратов в целях достижения максимальной производительности, высокого индекса КПД и простого технического обслуживания теплообменников.

Характеристики оборудования

Теплообменное оборудование маркируется следующими данными:

Помимо этого, в комплектацию входят схема и техпаспорт на языке страны-производителя, в нужных случаях переведенный на язык продающей страны.

Возможно диагональное и вертикальное расположение контуров. При диагональном расположении контуров требуется производить установку только в вертикальное положение. Тогда возможно поступление горячей воды в теплообменивающий аппарат в направлении сверху вниз. При этом происходит передача тепла в автономную систему посредством разделительных пластин.

Вода на входе – повышенной температуры, а на выходе она снижена. При этом в контуре, принадлежащем автономной системе, движение теплоносителя происходит снизу вверх. На нижних уровнях происходит слабый нагрев воды, при приближении к верхним – нагрев усиливается. Это облегчает функционирование системы. Подача воды в оборудование возможна благодаря принудительной циркуляции.

Монтаж

Монтаж пластинчатого теплообменника, как наиболее распространенного, осуществляется по трем вариантам:

При параллельном монтаже требуется установить терморегулятор. Этот способ экономит пространство, время, а также не требует больших затрат. Двухступенчатая смешанная схема обеспечивает значительную экономию теплоносителя. Это достигается благодаря использованию обратного тока теплой воды для обогрева потока с более низкой температурой.

Использование последовательной схемы применяет разделение входящего потока на две ветки. Одна из них проходит сквозь регулятор, другая – сквозь подогреватель. Далее оба потока смешиваются, после чего попадают в отопительный блок. Это экономит теплоноситель. Полная автоматизация оборудования невозможна.

Теплообменники закрепляются на стене с помощью крепежной ленты, консоли и уголка, прикрепленного к нижней части устройства. После этого требуется провести установку фильтров. Минимальное условие – присутствие фильтрующей системы в системе теплоцентрали. Перед установкой стоит подготовить краны и американки – резьбовые разъемные соединительные компоненты. Каждый из них включает в состав накидную гайку, прокладку и два фитинга. Важно правильно подбирать запчасти, чтобы они подходили к диаметру системы подключения. Тогда монтаж не вызовет затруднений.

Заявка
Подберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок.

    Работаем по всей России!



    Отправьте заявку
    и получите коммерческое предложение

    Закрыть

    Наш менеджер перезвонит Вам: