Теплообменное оборудование
- Показатели работы теплообменного аппарата
- Классификация теплообменного оборудования предприятий
- Виды и свойства теплоносителей
- Универсальное оборудование
- Применение теплообменников
- Характеристики оборудования
- Монтаж
Теплообменное оборудование – это набор различных устройств и агрегатов, осуществляющих или способствующих передаче тепла от горячего теплоносителя холодному.
Теплоноситель – это среда, обладающая определенным объемом тепла. Ей могут быть: вода, антифриз, нефть, кислоты, газы и многие другие виды веществ.
"ИНТЕХ-Климат" готова реализовать профессиональные решения по климатическому и другому инженерному оборудованию. Выполним полный цикл работ "под ключ": проектирование, подбор, поставка, монтаж и обслуживание.
Звоните сейчас:
Показатели работы теплообменного аппарата
К теплообменному оборудованию можно отнести насосы, насосные станции, приборы автоматики, запорную арматуру и, кончено же, теплообменники.
Главное условие применения любого оборудования – высокая продуктивность. У теплообменного аппарата этот показатель зависит от ряда критериев:
- Коэффициент теплопередачи определяется агрегатным состоянием вещества, конструкцией и материалом теплообменника.
- Площадь теплообмена: чем больше поверхность соприкосновения рабочей среды с греющим элементом, тем большее количество энергии сможет принять теплопотребитель.
- Разность температур – движущая сила процесса.
На эффективность работы прибора большое значение оказывает способ передачи энергии: теплопередача, конвекция или излучение. Один аппарат может сочетать в себе все три типа в разных частях устройства.
Классификация теплообменного оборудования предприятий
По назначению теплообменные аппараты делятся на подогреватели, испарители, конденсаторы, холодильники и т. д.
По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные.
Рекуперативными называются такие аппараты, в которых тепло от горячего теплоносителя к холодному передается через разделяющую их стенку. Примером таких аппаратов являются паровые котлы, подогреватели, конденсаторы и др.
Регенеративными называются такие аппараты, в которых одна и та же поверхность нагрева омывается то горячим, то холодным теплоносителем. При протекании горячей жидкости тепло воспринимается стенками аппарата и в них аккумулируется, при протекании холодной жидкости это аккумулированное тепло ею воспринимается. Примером таких аппаратов являются регенераторы мартеновских и стеклоплавильных печей, воздухоподогреватели доменных печей и др.
В рекуперативных и регенеративных аппаратах процесс передачи тепла неизбежно связан с поверхностью твердого тела. Поэтому такие аппараты называются также поверхностными.
В смесительных аппаратах процесс теплопередачи происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. В этом случае теплопередача протекает одновременно с материальным обменом. Примером таких теплообменников являются башенные охладители (градирни), скрубберы и др.
Если участвующие в тепломассообмене горячий и холодный теплоносители перемещаются вдоль поверхности нагрева в одном и том же направлении, тепломассообменный аппарат называют прямоточным, при встречном движении теплоносителей и сред — противоточным, а при перекрестном движении — перекрестноточным. Перечисленные схемы движения теплоносителей и сред в аппаратах называют простыми. В том случае, когда направление движения хотя бы одного из потоков по отношению к другому меняется, говорят о сложной схеме движения теплоносителей и сред.
Виды и свойства теплоносителей
В качестве теплоносителей в зависимости от назначения производственных процессов могут применяться: водяной пар, горячая вода, дымовые и топочные газы, высокотемпературные и низкотемпературные теплоносители.
Водяной пар как греющий теплоноситель получил большое распространение вследствие ряда своих достоинств:
- Высокие коэффициенты теплоотдачи при конденсации водяного пара позволяют получать относительно небольшие поверхности теплообмена.
- Большое изменение энтальпии при конденсации водяного пара позволяет расходовать малое его массовое количество для передачи сравнительно больших количеств теплоты.
- Постоянная температура конденсации при заданном давлении дает возможность наиболее просто поддерживать постоянный режим и регулировать процесс в аппаратах.
Основным недостатком водяного пара является значительное повышение давления в зависимости от температуры насыщения.
Наиболее часто употребляемое давление греющего пара в теплообменниках составляет от 0,2 до 1,2 МПа. Теплообменники с паровым обогревом для высоких температур получаются очень тяжелыми и громоздкими по условиям обеспечения прочности, имеют толстые фланцы и стенки, весьма дороги и поэтому применяются редко.
Горячая вода получила большое распространение в качестве греющего теплоносителя, особенно в системах отопления и вентиляционных установках. Подогрев воды осуществляется в специальных водогрейных котлах или водонагревательных установках ТЭЦ и котельных. Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплоотдачи
Дымовые и топочные газы как греющая среда применяются обычно на месте их получения для непосредственного обогрева промышленных изделий и материалов, если физико-химические характеристики последних не изменяются при взаимодействии с сажей и золой.
Достоинством топочных газов является возможность нагрева ими материала до весьма высоких температур. Однако оно не всегда может быть использовано вследствие трудности регулировки и возможности перегрева материала. Высокая температура топочных газов приводит к большим тепловым потерям. Газы, покидающие топку с температурой выше 1000 °С, доходят до потребителя с температурой не выше 700 °С, так как осуществить удовлетворительную термоизоляцию при таком высоком уровне температур достаточно трудно.
К недостаткам дымовых и топочных газов при использовании их в качестве теплоносителя можно отнести следующее:
- Малая плотность газов, которая влечет за собой необходимость получения больших объемов для обеспечения достаточной теплопроизводительности, что приводит к созданию громоздких трубопроводов.
- Вследствие малой удельной теплоемкости газов их необходимо подавать в аппараты в большом количестве с высокой температурой; последнее обстоятельство вынуждает применять огнеупорные материалы для трубопроводов. Прокладка таких газопроводов, а также создание запорных и регулирующих приспособлений по тракту течения газа связаные с большими трудностями.
- Вследствие низкого коэффициента теплоотдачи со стороны газов теплоиспользующая аппаратура должна иметь большие поверхности нагрева и поэтому получается весьма громоздкой.
К высокотемпературным теплоносителям относятся: минеральные масла, органические соединения, расплавленные металлы и соли. Низкотемпературные теплоносители — это вещества, кипящие при температурах ниже 0 °С. К ним относят: аммиак, двуокись углерода, сернистый ангидрид, фреоны.
Универсальное оборудование
Из всех разновидностей наиболее востребованы пластинчатые теплообменники. Их популярность обусловлена эксплуатационными характеристиками и оптимизируемостью под определенные гидравлические и термодинамические параметры. Кроме того, эти устройства обладают малым весом и занимают небольшую площадь.
Пластинчатые теплообменники, цельносварные, паянные или разборные демонстрируют высокие теплотехнические показатели. Дело в том, что в узких каналах между гофропластинами создается турбулизация жидких теплоносителей, что способствует интенсивному обмену тепловой энергией в агрегате. Отличительная особенность заключается в том, что пластины различного профиля можно комбинировать и модифицировать, тем самым адаптируя мощность и эффективность в зависимости от изменений эксплуатационных условий.
Среди других преимуществ этих аппаратов отмечают внушительный диапазон температурных условий (-30°С — +200°С), возможность быстрого и недорого монтажа, подбор эластомеров для уплотнения каналов, приемлемую цену относительно рабочего потенциала. Гибкие конструкции устройств Termowave легко чистить и обслуживать. Для разбора нужно немного ослабить талрепы.
Применение теплообменников
Не менее популярные кожухотрубные теплообменники стремятся купить те, кто доверяет их надежности и прочности. Эти агрегаты обладают простой конструкцией, подразделяющейся на четыре типа, в зависимости от конфигурации трубок и локализации компенсатора. Универсальны в применении — от конденсаторов и холодильных установок до испарителей. Одним из наиболее часто используемых видов кожухотрубных агрегатов считается водяной подогреватель, в котором тепловым агентом выступает горячая вода. Но в целом, рабочие характеристики этих теплообменников уступают пластинчатым аналогам.
Производители оборудования постоянно совершенствуют конструкцию аппаратов в целях достижения максимальной производительности, высокого индекса КПД и простого технического обслуживания теплообменников.
Характеристики оборудования
Теплообменное оборудование маркируется следующими данными:
- уровень тестового давления;
- уровень максимального рабочего давления;
- уровень максимальной рабочей температуры;
- производитель.
Помимо этого, в комплектацию входят схема и техпаспорт на языке страны-производителя, в нужных случаях переведенный на язык продающей страны.
Возможно диагональное и вертикальное расположение контуров. При диагональном расположении контуров требуется производить установку только в вертикальное положение. Тогда возможно поступление горячей воды в теплообменивающий аппарат в направлении сверху вниз. При этом происходит передача тепла в автономную систему посредством разделительных пластин.
Вода на входе – повышенной температуры, а на выходе она снижена. При этом в контуре, принадлежащем автономной системе, движение теплоносителя происходит снизу вверх. На нижних уровнях происходит слабый нагрев воды, при приближении к верхним – нагрев усиливается. Это облегчает функционирование системы. Подача воды в оборудование возможна благодаря принудительной циркуляции.
Монтаж
Монтаж пластинчатого теплообменника, как наиболее распространенного, осуществляется по трем вариантам:
- параллельному;
- смешанному двухступенчатому;
- последовательному двухступенчатому.
При параллельном монтаже требуется установить терморегулятор. Этот способ экономит пространство, время, а также не требует больших затрат. Двухступенчатая смешанная схема обеспечивает значительную экономию теплоносителя. Это достигается благодаря использованию обратного тока теплой воды для обогрева потока с более низкой температурой.
Использование последовательной схемы применяет разделение входящего потока на две ветки. Одна из них проходит сквозь регулятор, другая – сквозь подогреватель. Далее оба потока смешиваются, после чего попадают в отопительный блок. Это экономит теплоноситель. Полная автоматизация оборудования невозможна.
Теплообменники закрепляются на стене с помощью крепежной ленты, консоли и уголка, прикрепленного к нижней части устройства. После этого требуется провести установку фильтров. Минимальное условие – присутствие фильтрующей системы в системе теплоцентрали. Перед установкой стоит подготовить краны и американки – резьбовые разъемные соединительные компоненты. Каждый из них включает в состав накидную гайку, прокладку и два фитинга. Важно правильно подбирать запчасти, чтобы они подходили к диаметру системы подключения. Тогда монтаж не вызовет затруднений.